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EXECUTIVE SUMMARY 

The U.S. nuclear industry is facing a challenge in maintaining required levels 

of safety while ensuring economic competitiveness to stay in business. Safety 

remains a key parameter for all aspects of light-water reactor nuclear power plant 

operations. Safety can become more economical by using a risk-informed 

ecosystem, such as the one being developed in the Risk-Informed Systems 

Analysis Pathway under the U.S. Department of Energy Light Water Reactor 

Sustainability Program. The Light Water Reactor Sustainability Program 

promotes a wide range of research and development activities to maximize both 

the safety and economic efficiency of nuclear power plants through improved 

scientific understanding, especially given that many plants are now considering 

second license renewals. 

The Risk-Informed Systems Analysis Pathway has two main goals: 

• Deploy methodologies and technologies that better represent safety margins 

and cost and safety factors 

• Develop advanced applications that enable cost-effective plant operations. 

The Plant Reload Optimization Platform development project aims to build a 

reactor core design tool that includes reactor safety and fuel performance 

analyses and uses artificial intelligence to support the optimization of core design 

solutions. 

This report summarizes genetic-algorithm-based multi-objective fuel reload 

optimization activities, specifically: 

• Developing the non-dominated sorting genetic algorithm II optimizer in the 

Risk Analysis and Virtual ENviroment (RAVEN) 

• Demonstrating and validating the developed non-dominated sorting genetic 

algorithm II optimizer using benchmark optimization problems. 
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1. INTRODUCTION 

The United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) 

Program Risk-Informed Systems Analysis (RISA) Pathway Plant Reload Optimization Project aims to 

develop an integrated, comprehensive platform offering an all-in-one solution for reload evaluations with 

a special focus on core design optimization [1]. Fuel reload optimization is a multi-physics problem that 

needs to consider core design, fuel performance, and system safety. The genetic algorithm (GA) was 

selected as the foundation for the optimization platform. In Fiscal Year (FY) 2023, researchers used 

NSGA-II (non-dominated sorting genetic algorithm II), a GA variant, for the multi-objective optimization 

problems (MOOPs) to optimize multiple objectives, such as fuel cycle length, enrichment, and burnable 

poisons with multiple constraints, including core design limits and system safety parameters. 

This project used Idaho National Laboratory’s Risk Analysis and Virtual Environment (RAVEN) [2] 

as the workflow manager and a fuel reload optimization platform. RAVEN controls the perturbations of 

input decks to all the physics codes in neutronics, fuel performance, and safety analyses via generic and 

specialized built-in code interfaces, parses inputs and outputs, and performs post-processing of the 

simulation results. 

The reactor core design problem is a complex problem involving high-dimensional input-output 

streams with nuclear power plant level feedback, rendering the interdependencies between nonlinear 

parameters of interest. It is challenging to create a global model that can translate multi-physics inputs 

into safety requirements or economic metrics. The reactor core design usually involves considering 

constraints of numerous parameters and multiple objectives, including neutronics, fuel performance, 

safety requirements, and economic objectives. 

Many studies have been dedicated to optimizing the fuel loading pattern and leading the development 

of artificial-intelligence-based approaches [3]. One of the metaheuristic techniques used for optimizing 

the fuel loading pattern was the GA, which was inspired by natural evolution [4]. This method has proven 

to be more effective than traditional optimization techniques. These studies developed several in-core fuel 

management strategies using GA to optimize multiple parameters simultaneously [5]–[7]. 

The GA optimization platform development progressed in FY-2022 by implementing more 

evolutionary operations mechanisms (i.e., fitness functions, parent selection, crossover, mutation, and 

survivor selection) [8]. In FY-2023 the development focused on the improving the GA method for multi-

objective optimization and risk-informed methodology applicability to the Plant Reload Optimization 

Platform. 
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2. DEVELOPMENT STATUS OF MULTI-OBJECTIVE OPTIMIZATION 
PLATFORM 

2.1 Background of Multi-Objective Optimization 

When a problem involves multiple objectives, it results in a set of optimal solutions known as Pareto-

optimal solutions instead of a single optimal solution. In the absence of additional information, the 

solutions on the Pareto curve (or Pareto front) are assumed to be the optimal solutions, thus Pareto-

optimal solutions. Traditional optimization methods, including multi-criteria decision-making techniques, 

recommend transforming the multi-objective optimization problem (MOOP) into a single-objective 

optimization problem by emphasizing one Pareto-optimal solution during single simulation. However, for 

a problem with multiple solutions, this approach needs to be applied multiple times, with each simulation 

expected to yield a different solution. 

A MOOP includes a set of n decision variables, k objective functions, and a set of (m inequality and p 

equality) constraints. The optimization goal is: 

Min/Max 𝒚(𝒙) = (𝑓1(𝒙), 𝑓2(𝒙), … , 𝑓𝑘(𝒙)), 𝑘 ≥ 2       (1) 

Subject to 𝑔𝑖(𝒙) ≤ 0, 𝑖 = 1, 2, … , 𝑚         (2) 

  ℎ𝑗(𝒙) = 0, 𝑖 = 1, 2, … , 𝑝           (3) 

where 𝒙 = (𝑥1, … , 𝑥𝑛) is an n-dimensional decision vector in 𝒙 ∈  ℝ𝑛 (ℝ is the set of real numbers), y is a 

k-dimensional objective vector in ℝ𝑘, f defines the mapping function, 𝑔𝑖 is the ith inequality constraint, 

and ℎ𝑗 is the jth equality constraint. 

If the following conditions are satisfied, x1 can be considered as superior to x2, where x1 and x2 are the 

two feasible solution vectors of the multi minimization problem. 

𝑓𝑗(𝒙𝟏) ≤ 𝑓𝑗(𝒙2) for all 𝑗 = {1,2, … , 𝑘}, and 𝑓𝑗(𝒙1) < 𝑓𝑗(𝒙2) for at least one 𝑗 = {1,2, … , 𝑘},    (4) 

where k is the number of objective functions and 𝑓𝑗(𝒙) is jth value of an objective function for decision 

vector x. 

Here, the vector value x is the Pareto-optimal solution when it is not dominated by any other feasible 

solutions. The collection of all Pareto-optimal solutions is a Pareto set, and the objective vectors that 

correspond to the Pareto set are called a Pareto front, as illustrated in Figure 1. 
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Figure 1. Pareto dominance. 

Several multi-objective evolutionary algorithms (MOEAs) have been proposed with different 

purposes and applicability. Table 1 shows a summary of the different MOEAs. For the plant fuel reload 

optimization, the NSGA-II was selected for various reasons. Firstly, after testing it on multiple testing 

problems, NSGA-II showed an advantage in finding a wide range of solutions and converging 

characteristics compared to the other contemporary MOEAs [9]. NSGA-II, initially proposed by Deb et 

al. in 2000 [9], is a powerful GA-based method for solving MOOPs and problems with continuous and 

discrete variables. Furthermore, NSGA-II has shown its efficiency in managing many engineering 

optimization problems [10]. 
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Table 1. Comparison summary among multi evolutionary algorithms [11]. 

Algorithm Fitness Assignment Diversity Mechanism Elitism 

External 

Population Advantages Disadvantages 

VEGA [12] 

Each subpopulation is 

evaluated with respect 

to a different objective 

No No No 

First MOGA 

straightforward 

implementation 

Tend to converge to 

the extreme of each 

objective 

MOGA [13] Pareto ranking 
Fitness sharing by 

niching 
No No 

Simple extension of 

single-objective GA 

Usually slow 

convergence  

WBGA [14] 
Weighted average of 

normalized objectives 

Niching 

predefined wights 
No No 

Simple extension of 

single-objective GA 

Difficulties in non-

convex objective 

function space 

NPGA [15] 
No fitness assignment 

Tournament selection 

Niche count as 

tiebreaker in 

tournament selection 

No No 
Very simple 

tournament selection 

Problems related to 

niche size parameters 

RWGA [16] 
Weighted average of 

normalized objectives 

Randomly assigned 

weights 
Yes Yes 

Efficient and easy 

implement 

Difficulties in non-

convex objective 

function space 

PESA [17] No fitness assignment Cell-based density Pure elitist Yes 

Easy to implement and 

computationally 

efficient 

Performance depends 

on cell sizes 

PAES [18] 

Pareto dominance is 

used to replace a 

parent if offspring 

dominates 

Cell-based density as 

tiebreaker between 

offspring and parent 

Yes Yes 

Random mutation hill-

climbing strategy that 

is easy to implement 

and computationally 

efficient 

Prior information 

needed about objective 

space, not a 

population-based 

approach, and 

performance depends 

on cell sizes 

NSGA [19] 

Ranking based on 

non-domination 

sorting 

Fitness sharing by 

niching 
No No Fast convergence 

Problems related to 

niche size parameter 

NSGA-II [20] 

Ranking based on 

non-domination 

sorting 

Crowding distance Yes No 
Single parameter, well 

tested, and efficient 

Crowding distance 

works in objective 

space only 
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SPEA [21] 

Ranking based on the 

external archive of 

non-dominated 

solutions 

Clustering to truncate 

external population 
Yes Yes 

Well tested, with no 

parameter for 

clustering 

Complex clustering 

algorithm 

SPEA-2 [22] 
Strength of 

dominators 

Density based on the 

kth nearest neighbor 
Yes Yes 

Improved SPEA and 

made sure extreme 

points are preserved 

Computationally 

expensive fitness and 

density calculation 

RDGA [23] 

The problem reduced 

to bi-objective 

problem with solution 

rank and density as 

objectives 

Forbidden region cell-

based density 
Yes Yes 

Dynamic cell update 

that was robust with 

respect to the number 

of objectives 

More difficult to 

implement than others 

DMOEA [24] Cell-based ranking 
Adaptive cell-based 

density 

Yes 

(implicitly) 
Yes 

Includes efficient 

techniques to update 

cell densities and 

adaptive approaches to 

set GA parameters 

More difficult to 

implement than others 
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2.2 Non-Dominated Sorting Genetic Algorithm II 

The NSGA-II optimization inherits definitions used in the GA method. For instance, the initial set of 

solutions—called a population—is composed of a chromosome, which is a vector of variables (called 

genes in NSGA-II). Figure 2 shows a schematic diagram of the population and its element. 

 

Figure 2. The set of potential solutions (population) and their elements. 

2.2.1 Basic Structure of Non-dominated Sorting Genetic Algorithm II 

NSGA-II has three basic concepts of optimization: dominance depth method, elitism, and crowding 

distance. 

2.2.1.1 Dominance Depth Method 

The dominance depth method sorts non-dominated solutions using the Pareto dominance concept. 

The non-dominated sorting procedure commences by allocating the initial population's non-dominated 

members to the first front (or so-called “rank” in NSGA-II). These members are then categorized into the 

first front and are removed from the initial population. The remaining population members undergo the 

dominance depth method. The non-dominated members of the residual population are then designated the 

second rank and added to the second front. This process is reiterated until all population members are 

grouped into different fronts based on their respective ranks. Figure 3 shows an example of the 

dominance depth method. The solutions are scattered and non-dominated in the left figure and sorted with 

four different Pareto fronts in the right figure. 

 

Figure 3. The dominance depth method. 
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2.2.1.2 Elitism 

Elitism, also known as the elite preserving strategy, is an essential concept that NSGA-II emphasizes. 

It conserves a population's elite solutions by directly transferring them to the succeeding generation. Put 

differently, the non-dominated solutions discovered in each generation proceed to the next generations 

until some solutions dominate them. 

2.2.1.3 Crowding Distance 

To assess the density of solutions surrounding a specific solution, the crowding distance is computed. 

It represents the average distance between two solutions on each side of the solution along each objective. 

When comparing two solutions that have different crowding distances, the one with the greater crowding 

distance is believed to exist in a less congested area. The ith solution's crowding distance is the average 

side length of the cuboid, as depicted in Figure 4. If 𝑓𝑗
𝑖 is the jth value of an objective function for the ith 

solution and 𝑓𝑗
𝑚𝑎𝑥and 𝑓𝑗

𝑚𝑖𝑛 are the maximum and minimum values, respectively, of jth objective function 

among all the solutions, the crowding distance of ith solution is defined as the average distance of the two 

nearest solutions on either side, as given in Equation (4). 

𝑐𝑑(𝑖) =  ∑
𝑓𝑗

𝑖+1−𝑓𝑗
𝑖−1

𝑓𝑗
𝑚𝑎𝑥−𝑓𝑗

𝑚𝑖𝑛
𝑘
𝑖=1           (5) 

where k is the number of objective functions. 

 

Figure 4. Cuboid with neighboring solutions for calculating crowding distance. 
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the rank of chromosomes and their crowding distances for selecting ones out of chromosomes for the next 

generation. The survivor selection process are: 

[1] Select chromosomes that do not violate any constraints 

[2] If both the chromosomes have different ranks, the one with the better rank is selected for the next 

generation 

[3] If both the chromosomes are of the same ranks, the one with the higher crowding distance is 

selected for the next generation. 

M
in

im
iz

e 

Minimize 

Cuboid

Pareto front



 

 8 

2.2.3 Procedures 

The NSGA-II procedure begins with generating an initial population P(t=0) of size N, where t 

represents the number of iterations. Then a new population Q(t=0) (offspring) is created after performing 

crossover and mutation operations on the population P(t=0). After that, the population P(t=0) and Q(t=0) 

are combined to form a new population R(t=0) (which is the size of 2 × N), and the non-dominated 

sorting procedure is performed on R(t=0). Then the population members of R(t=0) are ranked into 

different fronts according to their non-domination levels. 

The next process is to select N members from R(t=0) to create the next population P(t=1). If the size 

of the first front is greater than or equal to N, only N members are selected from the least crowded region 

of the first front to form P(t=1). On the contrary, if the size of the first front is less than N, the 

chromosomes of first front are directly transferred to the next generation, and the remaining members are 

taken from the least crowded region of the second front and added to P(t=1). If the size of P(t=1) is still 

less than N, the same procedure is followed for the next consecutive fronts until the size of P(t=1) 

becomes equal to N. The populations of P(t=2), P(t=3), …, are constructed following same procedure 

until the stopping criteria are satisfied. The NSGA-II procedure is shown in Figure 5. 

 

Figure 5. Procedure of NSGA-II. 

2.3  Implementation of the Multi-Objective Optimization in RAVEN 

The multi-objective optimization of NSGA-II was developed in the RAVEN framework. Constraint 

handling, mutation, and crossover processes were implemented in the RAVEN optimizer. The dominance 

depth and crowding distance methods were added in the survivor selection model. NSGA-II’s multi-

objective optimization RAVEN source code is not currently publicly available. The two demonstration 

cases were a minimization of local sums problem and a ZDT (Zitzler-Deb-Thiele) benchmark problem. 

2.3.1 Minimizations of Local Sums with Constraints 

The demonstration involved a simple MOOP, the minimizations of local sums. The general form of 

the problem can be expressed as: 
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6
𝑖=1  

• Minimize 𝑓2(𝒙) = ∑ 𝑖 × 𝑥𝑖
2
𝑖=1  

• Explicit constraint: 𝑥3 + 𝑥4 < 10 

P(t)

Q(t)

Non-
dominated 

sorting

Size = 2N

Crowding distance 
sorting

Rejected

Size = N

2

3

4

1



 

 9 

• Implicit constraint: 𝑓1(𝒙) < 100. 

where 𝑥𝑖~𝒰𝑑[2, 7] is sampled from a discrete uniform distribution. Figure 6 shows examples of accepted 

and eliminated solutions. For instance, solution 𝒙 = (7, 4, 6, 3, 2, 5) is an accepted solution that satisfies 

all constraints. However, solution 𝒙 = (4, 3, 6, 7, 2, 5) violates an explicit constraint, so this solution will 

be eliminated during the survivor selection process. This problem is the multi-sum optimization problem. 

 

Figure 6. Multi-Sum problems with explicit and implicit constraints. 

Figure 7 and Figure 8 show the multi-sum model and implicit and explicit constraint models for 

RAVEN, respectively. RAVEN input for the multi-sum optimization problem is shown in Appendix A. 

 

Figure 7. RAVEN multis-sum model. 
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Figure 8. Implicit and explicit constraint modeling of RAVEN. 

Figure 9 shows the multi-sum test results. The solutions converge to the theoretic optimal solutions 

after 50 iterations. Table 2 shows parameters used for implementing NSGA-II in RAVEN for multi-sum 

problem solving. A two points crossover and random mutator gave enough perturbation to the offspring 

populations. The probabilities of crossover and mutation were set to 0.7 from the maximum value of 1.0. 

This led to an increased level of diversity in the offspring populations. 
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Figure 9. Multi-sum test results in RAVEN. 

Table 2. NSGA-II parameters for the multi-sum problem in RAVEN. 

Population size 30 Generation 50 

Crossover type Two points crossover Mutation type Random mutator 

Probability of crossover 0.7 Probability of mutation 0.7 

2.3.2 Benchmark with the Zitzler-Deb-Thiele Problem 

The ZDT problem is a MOOP that is commonly used as a benchmark in evolutionary algorithms and 

other optimization techniques [25]. The ZDT problem consists of a set of test functions, each with a 

different number of decision variables and objective functions. The general form of the ZDT problem can 

be expressed as: 

• Minimize 𝑓1(𝒙) 

• Minimize 𝑓2(𝒙) = 𝑔(𝒙) ∙ ℎ(𝑓1(𝒙), 𝑔(𝒙)). 

where 0 ≤ 𝑥𝑖 ≤ 1 𝑎𝑛𝑑 𝑖 = 1, … , 𝑛. 

The ZDT problem is particularly challenging because the objective functions are non-linear and have 

conflicting objectives, so improving one objective function may result in a degradation of others. 
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There are several variants of the ZDT problem, each with different numbers of decision variables and 

objective functions. These variants are designed to test the ability of optimization algorithms to handle 

problems with different levels of complexity. The ZDT1 problem functions are expressed as below: 

𝑓1(𝒙) = 𝑥1             (5) 

𝑔(𝒙) = 1 +
9

𝑛−1
∑ 𝑥𝑖

𝑛
𝑖=2            (6) 

ℎ(𝑓1, 𝑔) = 1 − √
𝑓1

𝑔
            (7) 

with 30 variables (n = 30). 

Figure 10 shows the ZDT1 model communicating with RAVEN. The RAVEN input for the ZDT1 

optimization problem is shown in Appendix B. 

 

Figure 10. RAVEN input for the ZDT1 model. 

Figure 11 shows the ZDT1 test results. After 350 simulation iterations, the solutions are converged to 

the theoretical optimal Pareto front. Table 3 shows the parameters used for implementing NSGA-II in 

RAVEN for ZDT1 problem solving. The population and generation were set large enough to apply a large 

input space (n=30). The probabilities of crossover and mutation were set to 0.8 and 0.9, respectively, 

which gave the highest level of diversity in the offspring populations. 
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Figure 11. ZDT1 test results in RAVEN. 

Table 3. NSGA-II parameters for the ZDT1 problem in RAVEN. 
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0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

O
b

je
c
ti

v
e
 2

 (
f 2

)

Objective 1 (f1)

Theoretic Optimal Solution Iter2 Iter10 Iter30 Iter60 Iter100 Iter150 Iter200 Iter350



 

 14 

3. SUMMARY AND FUTURE WORKS 

The NSGA-II optimizer was implemented for the Plant Reload Optimization Platform and 

demonstrated with a minimization with local sum and ZDT benchmark problems. The results showed the 

NSGA-II optimizer in RAVEN generates Pareto-optimal solutions well and converged to the target 

theoretical solution. However, for the realistic plant reload optimization problems, the following models 

will be added: 

• Implementation of the NSGA-II acceleration models: 

- Convergence acceleration scheme to improve the Pareto-optimal solutions' searching capability 

- Space exploration model to enhance the survival selection procedure in GA optimizer 

• Development of the adaptive mutation and crossover algorithms and additional convergence criteria 

• Investigation of any other hybrid meta-heuristic method, which may have better convergence 

behavior (e.g., GA coupled with the Particle Swarm method) 

• Demonstration of the multi-objective optimization platform with an actual reactor core design 

problem. 
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Appendix A 
RAVEN Input for Multi-sum Optimization Problem 

 

<?xml version="1.0"?> 
<Simulation verbosity="debug" profile="jobs"> 
  <TestInfo> 
  
<name>\raven\tests\framework\Optimizers\NSGAII\di
screte\constrained\</name> 
  <author>Junyung Kim, Mohammad Abdo </author> 
  <created>2022-12-21</created> 
  <classesTested/> 
  <description>NSGA-II min-min test 
</description> 
  </TestInfo> 
 
  <RunInfo> 
  
<WorkingDir>Multi_MinwoReplacement_Figure</Workin
gDir> 
  <Sequence>optimize,print</Sequence> 
  <batchSize>2</batchSize> 
  </RunInfo> 
 
  <Steps> 
  <MultiRun name="optimize" re-seeding="2286"> 
  <Input class="DataObjects" 
type="PointSet">placeholder</Input> 
  <Model class="Models" 
type="ExternalModel">myLocalSum</Model> 
  <Optimizer class="Optimizers" 
type="GeneticAlgorithm">GAopt</Optimizer> 
  <SolutionExport class="DataObjects" 
type="PointSet">opt_export</SolutionExport> 
  <Output class="DataObjects" 
type="PointSet">optOut</Output> 
  <Output class="OutStreams" 
type="Print">opt_export</Output> 
  </MultiRun> 
  <IOStep name="print"> 
  <Input class="DataObjects" 
type="PointSet">opt_export</Input> 
  <Input class="DataObjects" 
type="PointSet">optOut</Input> 
  <Output class="OutStreams" 
type="Print">opt_export</Output> 
  <Output class="OutStreams" 
type="Print">optOut</Output> 
  </IOStep> 
  </Steps> 
 
  <Models> 
  <ExternalModel 
ModuleToLoad="../myLocalSum_multi.py" 
name="myLocalSum" subType=""> 
  
<variables>x1,x2,x3,x4,x5,x6,obj1,obj2</variables
> 
  </ExternalModel> 
  </Models> 
 
  <Functions> 
  <External file="../myConstraints.py" 
name="expConstr3"> 
  <variables>x1,x2,x3,x4,x5,x6</variables> 
  </External> 

  <External file="../myConstraints.py" 
name="impConstr3"> 
  <variables>x1,x2,x3,x4,x5,x6,obj1</variables> 
  </External> 
  </Functions> 
 
  <Distributions> 
  <UniformDiscrete name='woRep_dist'> 
  <lowerBound>2</lowerBound> 
  <upperBound>7</upperBound> 
  <strategy>withoutReplacement</strategy> 
  </UniformDiscrete> 
  </Distributions> 
 
  <Optimizers> 
  <GeneticAlgorithm name="GAopt"> 
  <samplerInit> 
  <limit>50</limit> 
  <initialSeed>42</initialSeed> 
  <writeSteps>every</writeSteps> 
  <type>min</type> 
  </samplerInit> 
 
  <GAparams> 
  <populationSize>30</populationSize> 
  
<parentSelection>tournamentSelection</parentSelec
tion> 
  <reproduction> 
  <crossover type="twoPointsCrossover"> 
  <crossoverProb>0.7</crossoverProb> 
  </crossover> 
  <mutation type="randomMutator"> 
  <mutationProb>0.7</mutationProb> 
  </mutation> 
  </reproduction> 
  <fitness type="rank_crowding"> 
  </fitness> 
  
<survivorSelection>rankNcrowdingBased</survivorSe
lection> 
  </GAparams> 
  <convergence> 
  <AHDp>0.0</AHDp> 
  </convergence> 
  <variable name="x1"> 
  <distribution>woRep_dist</distribution> 
  </variable> 
  <variable name="x2"> 
  <distribution>woRep_dist</distribution> 
  </variable> 
  <variable name="x3"> 
  <distribution>woRep_dist</distribution> 
  </variable> 
  <variable name="x4"> 
  <distribution>woRep_dist</distribution> 
  </variable> 
  <variable name="x5"> 
  <distribution>woRep_dist</distribution> 
  </variable> 
  <variable name="x6"> 
  <distribution>woRep_dist</distribution> 
  </variable> 
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  <objective>obj1, obj2 </objective> 
  <TargetEvaluation class="DataObjects" 
type="PointSet">optOut</TargetEvaluation> 
  <Sampler class="Samplers" 
type="MonteCarlo">MC_samp</Sampler> 
  <Constraint class='Functions' 
type='External'>expConstr3</Constraint> 
  <ImplicitConstraint class='Functions' 
type='External'>impConstr3</ImplicitConstraint> 
  </GeneticAlgorithm> 
  </Optimizers> 
 
  <Samplers> 
  <MonteCarlo name="MC_samp"> 
  <samplerInit> 
  <limit>30</limit> 
  <initialSeed>050877</initialSeed> 
  </samplerInit> 
  <variable name="x1"> 
  <distribution>woRep_dist</distribution> 
  </variable> 
  <variable name="x2"> 
  <distribution>woRep_dist</distribution> 
  </variable> 
  <variable name="x3"> 
  <distribution>woRep_dist</distribution> 
  </variable> 
  <variable name="x4"> 
  <distribution>woRep_dist</distribution> 
  </variable> 
  <variable name="x5"> 
  <distribution>woRep_dist</distribution> 
  </variable> 
  <variable name="x6"> 
  <distribution>woRep_dist</distribution> 

  </variable> 
  </MonteCarlo> 
  </Samplers> 
 
  <DataObjects> 
  <PointSet name="placeholder"/> 
  <PointSet name="optOut"> 
  <Input>x1,x2,x3,x4,x5,x6</Input> 
  <Output>obj1,obj2</Output> 
  </PointSet> 
  <PointSet name="opt_export"> 
  <Input>trajID</Input> 
  
<Output>x1,x2,x3,x4,x5,x6,obj1,obj2,age,batchId,r
ank,CD,ConstraintEvaluation_expConstr3, 
ConstraintEvaluation_impConstr3,fitness,accepted 
</Output> 
  </PointSet> 
  </DataObjects> 
 
  <OutStreams> 
  <Print name="optOut"> 
  <type>csv</type> 
  <source>optOut</source> 
  </Print> 
  <Print name="opt_export"> 
  <type>csv</type> 
  <source>opt_export</source> 
  <clusterLabel>trajID</clusterLabel> 
  </Print> 
  </OutStreams> 

</Simulation> 
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Appendix B 
RAVEN input for ZDT1 optimization problem 

 

<?xml version="1.0"?> 
<Simulation verbosity="debug" profile="jobs"> 
 <TestInfo> 
  
<name>raven\tests\framework\Optimizers\NSGAII\dis
crete\constrained\</name> 
  <author>Junyung Kim, Mohammad Abdo </author> 
  <created>2023-02-21</created> 
  <classesTested/> 
  <description>ZDT1 test using NSGA-
II</description> 
  </TestInfo> 
 
  <RunInfo> 
  <WorkingDir>ZDT1_result</WorkingDir> 
  <Sequence>optimize,print</Sequence> 
  <batchSize>1</batchSize> 
  </RunInfo> 
 
  <Steps> 
  <MultiRun name="optimize" re-seeding="2286"> 
  <Input class="DataObjects" 
type="PointSet">placeholder</Input> 
  <Model class="Models" 
type="ExternalModel">ZDT</Model> 
  <Optimizer class="Optimizers" 
type="GeneticAlgorithm">GAopt</Optimizer> 
  <SolutionExport class="DataObjects" 
type="PointSet">opt_export</SolutionExport> 
  <Output class="DataObjects" 
type="PointSet">optOut</Output> 
  <Output class="OutStreams" 
type="Print">opt_export</Output> 
  </MultiRun> 
  <IOStep name="print"> 
  <Input class="DataObjects" 
type="PointSet">opt_export</Input> 
  <Input class="DataObjects" 
type="PointSet">optOut</Input> 
  <Output class="OutStreams" 
type="Print">opt_export</Output> 
  <Output class="OutStreams" 
type="Print">optOut</Output> 
  </IOStep> 
  </Steps> 
 
  <Models> 
  <ExternalModel ModuleToLoad="../ZDT_model.py" 
name="ZDT" subType=""> 

  
<variables>x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,
x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,x2
1,x22,x23,x24,x25,x26,x27,x28,x29,x30,obj1
,obj2</variables> 

  </ExternalModel> 
  </Models> 
 
  <Distributions> 
  <Uniform name='unifDist'> 
  <lowerBound>0</lowerBound> 
  <upperBound>1</upperBound> 
  </Uniform> 
  </Distributions> 

 
  <Optimizers> 
  <GeneticAlgorithm name="GAopt"> 
  <samplerInit> 
  <limit>200</limit> 
  <initialSeed>42</initialSeed> 
  <writeSteps>every</writeSteps> 
  <type>min</type> 
  </samplerInit> 
 
  <GAparams> 
  <populationSize>100</populationSize> 
  
<parentSelection>tournamentSelection</parentSelec
tion> 
  <reproduction> 
  <crossover type="twoPointsCrossover"> 
  <crossoverProb>0.8</crossoverProb> 
  </crossover> 
  <mutation type="randomMutator"> 
  <mutationProb>0.9</mutationProb> 
  </mutation> 
  </reproduction> 
  <fitness type="rank_crowding"> 
  </fitness> 
  
<survivorSelection>rankNcrowdingBased</survivorSe
lection> 
  </GAparams> 
 
  <convergence> 
  <AHDp>0.0</AHDp> 
  </convergence> 
 
  <variable name="x1"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x2"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x3"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x4"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x5"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x6"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x7"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x8"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x9"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x10"> 
  <distribution>unifDist</distribution> 
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  </variable> 
 
  <variable name="x11"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x12"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x13"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x14"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x15"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x16"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x17"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x18"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x19"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x20"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x21"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x22"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x23"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x24"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x25"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x26"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x27"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x28"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x29"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x30"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <objective>obj1, obj2 </objective> 
  <TargetEvaluation class="DataObjects" 
type="PointSet">optOut</TargetEvaluation> 
  <Sampler class="Samplers" 
type="MonteCarlo">MC_samp</Sampler> 
  </GeneticAlgorithm> 
  </Optimizers> 

 
  <Samplers> 
  <MonteCarlo name="MC_samp"> 
  <samplerInit> 
  <limit>100</limit> 
  <initialSeed>050877</initialSeed> 
  </samplerInit> 
  <variable name="x1"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x2"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x3"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x4"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x5"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x6"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x7"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x8"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x9"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x10"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x11"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x12"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x13"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x14"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x15"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x16"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x17"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x18"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x19"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x20"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x21"> 
  <distribution>unifDist</distribution> 
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  </variable> 
  <variable name="x22"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x23"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x24"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x25"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x26"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x27"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x28"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x29"> 
  <distribution>unifDist</distribution> 
  </variable> 
  <variable name="x30"> 
  <distribution>unifDist</distribution> 
  </variable> 
  </MonteCarlo> 
  </Samplers> 
 
  <DataObjects> 
  <PointSet name="placeholder"/> 
  <PointSet name="optOut"> 

  
<Input>x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,
x12,x13,x14,x15,x16,x17,x18,x19,x20,x21,x2
2,x23,x24,x25,x26,x27,x28,x29,x30</Input> 

  <Output>obj1,obj2</Output> 
  </PointSet> 
  <PointSet name="opt_export"> 
  <Input>trajID</Input> 

  
<Output>x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11
,x12,x13,x14,x15,x16,x17,x18,x19,x20,x21,x
22,x23,x24,x25,x26,x27,x28,x29,x30,obj1,ob
j2,age,batchId,rank,CD,fitness,accepted 
</Output><!--Modify if necessary 
CD,iteration,accepted,conv_AHDp--> 

  </PointSet> 
  </DataObjects> 
 
  <OutStreams> 
  <Print name="optOut"> 
  <type>csv</type> 
  <source>optOut</source> 
  </Print> 
  <Print name="opt_export"> 
  <type>csv</type> 
  <source>opt_export</source> 
  <clusterLabel>trajID</clusterLabel> 
  </Print> 
  </OutStreams> 
</Simulation> 
 


